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Abstract

This paper gives an overview of the Philips Research system for continuous-
speech recognition. The recognition architecture is based on an integrated
statistical approach. The system has been successfully applied to various
tasks in American English and German, ranging from small vocabulary
tasks to very large vocabulary tasks and from recognition only to speech
understanding. Here, we concentrate on phoneme-based continuous-
speech recognition for large vocabulary recognition as used for dictation,
which covers a significant part of our research work on speech recognition.
We describe this task and report on experimental results. In order to allow
a comparison with the performance of other systems, a section with an
evaluation on the standard North American Business news (NABZ)
task (dictation of American English newspaper text) is supplied.

Keywords: acoustic model; continuous-speech recognition; dictation;
hidden Markov model (HMM); language model; large-
vocabulary recognition; search.

1. Introduction

For large-vocabulary continuous-speech recognition, there are a number of
operational prototype systems in rescarch, some of them participating in the
ARPA? research programme or its evaluations. Like the above mentioned

! present address: Lehrstuhl fiir Informatik VI, University of Aachen (RWTH), D-52056 Aachen,
Germany. E-mail: ney@informatik.rwth-aachen.de k

2 Abbreviations can be found in Table XIIL

3 Advanced Research Projects Agency (U.S.-American organization funding, among others,
speech recognition and understanding research).
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systems, the prototype system described in this paper is based on techniques of

statistical pattern recognition and stochastic modelling, where training data

are heavily exploited and local decisions are avoided as far as possible [1,2]. .
The characteristic features of the approach to be presented are:

e A large-size acoustic vector capturing first- and second-order derivatives is
used. There is no splitting into separate streams as in most other systems
that use tied mixtures.

e The Viterbi criterion is used both in training and recognition. Continuous
mixture densities are used in a way that amounts to what could be called
‘statistical template matching’.

e Linear discriminant analysis improves the acoustic analysis.

e For bigram language modelling, a non-linear interpolation has been devel-
oped that gives consistently lower perplexities4 than linear interpolation,
especially for small training corpora.

o The concept of time-synchronous beam search has been extended towards a
tree organization of the pronunciation lexicon, so that the search effort is
significantly reduced. A phoneme look-ahead technique results in an addi-
tional improvement.

The organization of the paper is as follows. We first summarize the statis- -
tical approach to speech recognition and the experimental conditions of our
dictation task. We then describe the tasks on which we develop and evaluate
our system. In the system description which follows, we describe the four
main entities of our recognizer: acoustic analysis, acoustic—phonetic modelling,
language modelling and search; experimental results are included within the
sections. To allow a comparison with the performance of other systems, a sec-
tion on our North American Business news system including the November
1994 evaluation (dictation benchmark test, American English) is supplied.

2. The statistical approach to automatic speech recognition
2.1. Problems of speech recognition

We first have to understand why automatic speech recognition is a difficult
task. To put it briefly, the main problem is variability. Even one and the same

4 Defined in Section 6, ‘Language modelling’.
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person is unable to exactly reproduce an utterance a second time. There is a lot
of variability that cannot be eliminated or effectively controlled:

e variability between speakers (e.g. different dialects, vocal tracts, ways of
speaking);

o variability of sounds or words, even for the same speaker (e.g. due to con-
text, mood of speaker);

e speaking rate;

e varying or unknown channel characteristics (e.g. different telephone lines,
microphones);

e background noise (e.g. car noise, music, conversation).

Facing this situation, the right approach seems to be a statistical model of
speech production. Indeed, the statistical approach to speech recognition
has proven to be very successful in the last two decades.

2.2. The system architecture

The statistical approach delivers only a framework in which many choices
are possible. Assume that the probabilities describing speech production
were known. In this case, there is a decision procedure (Bayes’ decision rule)
that guarantees minimal decision error rate. However, the ‘real’ probabilities
are unknown,; instead, probability estimates have to be derived from both
available data and prior knowledge. In research, we develop probabilistic
models (using a comparatively small amount of prior knowledge), with free
parameters that can be efficiently estimated on some limited amount of train-
ing data and that model the reality as closely as possible, i.e. that perform with
a low error rate on new test material. Hidden Markov models (HMMs) and
maximum-likelihood estimation are common in the speech recognition com-
munity; however, neither the model nor the estimation criterion and method
are specified by the statistical approach itself [1]. :

Following the statistical approach, our speech recognizer can be broken up
into four parts. Figure 1 presents a block diagram of the system architecture.
In the pre-processing step of acoustic analysis, the speech signal is transformed
into a sequence of acoustic vectors xy, ..., xp (over time ¢ =1, ..., T). As the
speech signal, and thus this sequence of observations, is not exactly reprodu-
cible, a statistical approach is used to model its generation. According to sta-
tistical decision theory, in order to minimize the probability of recognition
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Fig. 1. System architecture.

errors, one should select the word sequence W = wy, ..., wy (of unknown

length N) that maximizes [3]

Pr(Wl, ceny WN) - Pr(xl, ceny XTIWI, ceey WN)
Pr(xl, veey XT)

Pr(wy, .., wy|x1, . X7) =

As the denominator is constant for a given observation, this amounts to
finding wy, ..., wy that maximizes
Pr(wy, ..., wy)Pr{xy, ..., x7|wy, ..., wy)

The first term, the a-priori probability of word sequences Pr(wy, ... ,wy), is
independent of the acoustic observations and is completely specified by the
language model. Tt reflects the system’s knowledge of how to concatenate
words of the vocabulary to form whole sentences and thus captures syntactic
and semantic restriction. : ot

The acoustic—phonetic modelling is reflected by the second term.
Pr(xy,...,xr|wy,...,wy) is the conditional probability of observing the acous-
tic vectors xi, . . . ,xp when the words wy, ..., wy were uttered. These probabil-
ities are estimated during the training phase of the recognition system. A large-
vocabulary system typically is based on subword units like phonemes, which
are concatenated according to the pronunciation dictionary to form the word
models.
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The decision on the spoken words must be taken by an optimization proce-
dure which combines information of the language model and acoustic model,
the latter being based on the phoneme models and the pronunciation diction-
ary. The optimization procedure is usually referred to as search in a state space
defined by the knowledge sources.

2.3. Restrictions on the speech recognition conditions

As unrestricted, human-like speech recognition is not as yet possible
today, several restrictions typically are put on using a recognition system
in order to achieve an acceptable recognition performance. The most promi-
nent are:

Speaker dependence: Speaker-dependent systems require prior training by the
user, speaker-independent systems do not. A speaker-adaptive system starts
speaker-independently and then adapts to the speaker, requiring less speaker-
specific training material than a speaker-dependent system.

Input mode: Continuous-speech input is the way people normally talk, while
isolated word recognition requires pauses introduced between the words.

Channel conditions: They range from high-quality recordings to telephone line
channels and from clean recordings to recordings with, possibly strong, back-
ground noise.

Vocabulary size: From small (below 50 or 100 words) over medium to large
(over 1000) vocabulary.

Other important factors are the perplexity [4] of the task (a measure of the
intrinsic complexity of a task), spontaneity of speech and the consistency
between training and test conditions.

3. Evaluation of the prototype system

Before focusing on large-vocabulary tasks, let us briefly describe the other
conditions under which our speech recognition system is used. While it
remains essentially the same system, several obvious modifications reflect
the varying needs of these tasks. Giving two obvious examples, we use
(‘soft’) m-gram language models for dictation, but (‘hard’) finite-state
grammars for voice command; and the system is based on phonemes for large
vocabulary, while it is based on whole-word models for small vocabulary.

For small vocabulary (several to ten words), the system is used for speaker-
dependent and speaker-independent voice command or digit recognition over
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the telephone or in a car. A commercial system for voice dialling in a mobile
telephone has been developed at Philips Communication Systems [5,6]. The
application is characterized by strong background noise during recognition
that is absent in the training phase. In connection with our small-vocabulary
activities, we reported benchmark experiments on the TI° digit string database
[7]. Research work within the small-vocabulary framework is described in
reference [8].

The large-vocabulary (over 1000 words) version of the system is used for the
automatic transcription of dictations (described below) and for an automatic
inquiry system. This research prototype of a train inquiry system adds speech
understanding and dialogue capabilities to the speech recognition part. It
accepts speaker-independent input over the telephone. Its speech understand-
ing component performs a database query, and the dialog component generates
responses that are transformed into spoken output. The system does not
assume a standard form of dialogue and asks back for missing information.
Our automatic information system is described in references [9-12].

Large-vocabulary continuous-speech recognition for dictation is the main
focus of this paper, as it is prototypical for research done in the field of speech
recognition. In each of the topics acoustic modelling, language modelling, and
search, improvements have to be achieved to gradually increase the overall
system performance. '

The large-vocabulary recognizer is run under two different experimental
conditions: a Philips internal dictation task, connected to commercial require-
ments of the professional dictation system SP6000 of Philips Dictation
Systems, and the official evaluation conditions as standardized by the
US ARPA (Advanced Research Projects Agency). These conditions are
different and serve different purposes.

3.1. The Philips SP6000 dictation conditions

Under the Philips dictation conditions, our system is speaker dependent,
which is motivated by the fact that a high performance is necessary for the
everyday use of the system in a real environment. In addition, in a profes-
sional environment there are sufficient data available to train the system.
The language is German, which made the data collection and the field
tests easier for us. The SP6000 is installed in several Austrian and German
hospitals.

3 Texas Instruments.
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In data supplied to the scientific community, one typically tries to separate
the different effects that make speech recognition difficult. In contrast, the off-
line experiments of our dictation system were performed with data coming
from real applications which are characterized by an accumulation of difficul-
ties like the following: :

e We observe something like spontaneous speech (with hesitations and
strongly varying speaking rates) — less difficult than spontaneous speech
in a human dialogue, but still different from read speech.

e Speakers sometimes strongly vary the position of the microphone (varying
input channel). ‘

e We partly used analogue tape recordings. Due to the fact that the angular
velocity of one tape winding is constant for the minicassette, the bandwidth
varies with the recording’s position on the tape.

e Available text material for language modelling is limited for real applica-
tions. Typical values for speaker- or site-specific text corpora are 100k to
1 M words. In addition, there is often a mismatch between uttered words
and writing in real applications, such that exact transcriptions of the utter-
ances would be preferable.

e Open vocabulary: spoken words not included in the recognition vocabulary
produce recognition errors (typically 1.5 to 2 errors per missing word). We
do not apply any word rejection methods for dictation, because the missing
word has to be manually inserted anyway.

e Other robustness issues: in real life, it is unfortunately not guaranteed that
the training script is consistent with the recording.

We give a very brief look on experiments conducted in connection with our
speaker-dependent dictation task: the data in these experiments are real-life
field data from professional text producers. Speakers M-60 and M-61 are law-
yers, M-72 and M-73 are radiologists. All speakers are male and work in
Vienna, Austria. The speakers were asked to dictate as usual; this includes ver-
balized punctuation. The dictations were recorded with hand-held micro-
phones on analog desktop dictation equipment. (Later experiments with
digital recordings showed roughly the same performance.) We processed
exactly the same recordings that were also given to the secretaries for tran-
scription. Although all speakers are very experienced with dictation, we found
that recognition was harder on this material than on read texts.

Before we give experimental results for specific aspects of the system,
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TABLE I
Baseline system on 4 field test speakers. Bigram LM (language model), look-
ahead, no linear discriminant analysis (LDA), 9h training, 16 000 mixture
components

Speaker Vocabulary  Test-set Active states Word-error rate in (%)

perplexity  /centisecond Del. Ins.  Total
M-60 12073 113 8700 3.1 1.0 10.2
M-61 15188 176 9300 1.9 L.5 12.1
M-72 13095 267 11 600 2.4 1.9 11.2
M-73 13095 42 14000 0.6 1.7 5.7

Table I can serve as a reference on the system’s performance under conditions
to be explained later: a relatively high acoustic resolution (16 000 mixture com-
ponents) and about 9 hours of training material, but without Linear Discrimi-
nant Analysis (LDA). The test material comprised 2000 to 3000 spoken words
per speaker. The number of active states per centisecond before pruning is a
measure of the computational effort required for search. ‘

A second experimental set-up is defined by standardized publicly available
databases. The coming sections are devoted to this topic.

3.2. Why and when benchmarking?

¢

To some extent, comparison between speech recognizers is part of the scien-
tific competition: the quality of our work is largely reflected in the ability of the
acoustic and language models to model reality — which is typically measured
in terms of word error rate, given fixed experimental conditions. More import-
antly, reproducible benchmark tests allow us to validate the importance and
significance of improvements across research sites.

The boundary conditions for the development of a pure research system dif-
fer somewhat from the development of a dictation system for real use. There
are a lot of data available that represent the task well. As the only optimization
criterion is performance in terms of error rate, we take a much finer acoustic
resolution, for memory demands and processing time play a minor role here.

So far, we have benchmarked our system on

e the TI digit-string database [7];

e the DARPA RM (resource management) task [1,13—15] and participated in
the last official evaluation [15];
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e the Nov. 92 and the Nov. ’93 evaluations (official participation for Nov.
’93) of the Wall Street Journal task [16];

e the North American Business (NAB) news task (official participation in the
Nov. ’94yeyqluatio{r‘1‘).

The latter is described in some detail in the subsequent sections.

3.3. Description of the North American Business news task

Since 1986, ARPA has organized periodic formal evaluations of
Continuous-Speech Recognition (CSR) technology. Those evaluations were
highly regarded for the competitive stimulus they produced, resulting in the
rapid assimilation of new techniques across the CSR community worldwide.

In 1992/93, the ARPA-charted CSR Corpus Coordinating Committee
(CCCC) defined a corpus and specified an evaluation scheme, the Hub and
Spoke evaluation paradigm. It was conceived to accommodate the research
requirements of this diverse community and to generate convincing demon-
strations of technological capability. Tests were defined, to exercise the pri-
mary interests of all participants, and to include important comparisons
needed to make informed decisions about the efficacy of a particular algorithm
or general approach. At the same time, the evaluation preserved the important
controlled baseline test, characteristic of past ARPA-sponsored evaluations,
that permitted direct comparison of CSR technology across different
systems.

Starting with articles from the Wall Street Journal (WSJ), the corpus was
extended to five American newspapers, the so-called North American Business
(NAB) news (Washington Post, New York Times, Los Angeles Times, Dow
Jones Information Services and Reuters North American Business Report).
While the WSJ task was artificially limited to a 64 k-word vocabulary, the
NAB vocabulary for recognition is unlimited.

3.3.1. The Hub and Spoke evaluation paradigm

The Hub and Spoke evaluation paradigm [17] implies an array of fairly
independent tests (the Spokes) coupled to a central test (the Hub) in some
informative fashion. The Hub test is further distinguished by being an abstract
representation of a fundamentally important problem in CSR and by being the
only test required of all participants in the evaluation. It forms the basis for all
informative inter-system comparisons. '

The Spoke tests, on the other hand, are abstractions of problems of
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somewhat less central importance in CSR and evaluation on them is optional.
The Spoke tests can be informatively compared to the Hub test to calibrate the
difficulty of the problem, but they are otherwise independent. The Spoke tests
are specifically designed to permit infra-system comparisons of algorithms
and methods for problems involving mismatches between training and test
data.

Each Hub or Spoke test consists of a primary condition (designated the PO
condition) and several contrastive conditions (designated C1, C2, .. .). In gen-
eral, the primary tests are unconstrained with respect to the lexicon and acou-
stic or language model (LM) training allowed. The purpose of the primary
condition in each test is to showcase an algorithmic or procedural solution
to a problem in CSR.

In giving very strong constraints for the different test conditions, the
Hub and Spoke paradigm allows a glass box comparison of methods.
The result is a rich array of comparative and contrastive results on several
important problems in large-vocabulary CSR, all calibrated to the current
state-of-the-art performance levels. A complete listing of the numerical
results for 1993 can be found in reference [18]. For interpretive results,
the interested reader should consult the current papers of the participating
sites.

It is important to remember that the only tests for which fair and informa-
tive comparisons can be made across systems (and sites) are the controlled
C1 contrasts for either of the two Hub tests. All other tests are designed to
produce informative comparisons only within a given system run in two
contrastive modes. So in general, only within-system comparisons should be
made on the Spoke tests. ;

The Hub and Spoke evaluation paradigm appears to have met the com-
peting requirements of supporting the variety of important research interests
within the ARPA CSR community, while providing a mechanism to focus
that work into well-defined and competitively charged evaluations of enabling
technology.

3.3.2. 1994 Hub and Spoke test descriptions

The abstract problem represented by all the tests in the 1994 evaluation was
the dictation of news stories, with an emphasis on financial news. Most of the
tests in the 1994 evaluation used speech data from subjects reading diverse
articles from the 5 different NAB newspapers mentioned above. Typical tests
used 20 subjects reading 15 to 20 sentences each. Each test had equal numbers
of male and female subjects. The primary microphone was the Sennheiser
HMD-410.
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3.3.3. The 1994 Hub: HI — unlimited vocabulary read NAB news baseline

The Hub for 1994 was split into two tests differing in recording conditions
[office quality (hub H1) and telephone quality (hub H2) recordings]. It was
designed to measure state-of-the-art performance on an unlimited-vocabulary
speaker-independent test, using clean test data that were well-matched to the
training data.

The primary H1 test (H1-P0) allowed any language model (LM) or acoustic
training data to be used. In addition, the temporal order of the utterances and
the location of subject-session boundaries in the utterance sequence was given
to encourage the use of unsupervised incremental adaptation techniques. To
permit direct comparisons of acoustic modelling technology between different
systems, a required contrastive test (H1-C1) controlled the amount of training
data and specified the LM statistics. This contrast was run as a static speaker-
independent test, so utterance order and session boundaries were not given to
the system.

For H1-Cl, the acoustic training data were limited to 62 hours of speech
drawn from one of two segments of the combined WSJO and WSJ1 corpora.
One segment was made up of speech data from 284 subjects (the ‘short-term
speakers’) who produced 100 to 150 utterances each. The other segment had
37 subjects (‘long-term speakers’) who produced either 600 or 1200 utterances
each. Participants were free to choose which acoustic training corpus to use.

The common required LM specified for the H1-C1 test was produced by
Rosenberg at Carnegie Mellon University. It was a 3-gram back-off LM esti-
mated from 247 M words of text: a 3-year WSJO text corpus (1987-1989) of
121 M words, 115M words from Agency Press and 11.6M words from the
San Jose Mercury. Its lexicon was defined as the 20k most frequent words
in the corpus, hence, the test contained some words outside the vocabulary.

Training data as described above, both speech and text, were made available
to all partners who wished to participate at the benchmarking.

An optional contrast test, H1-C2, was specified as an extension of the H1-P0
where supervised adaptation was allowed.

3.3.4. The 1994 Spokes

There were 7 Spoke tests in the 1994 evaluation that were designed to sup-
port the major interests of the participating sites at the time.

Spoke SO as a 5k word test is intended for calibration of systems used in
other 5k Spokes (S3, S4, S5 and S10). Spoke S2 supported problems in LM
adaptation primarily. Non-business news (e.g. on AIDS) is to be recognized.
A small corpus of 10k words on the same subject is given to adapt the LM.
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Spokes 83 and S4 were targeted at speaker adaptation methods, S3 being par-
ticularized to non-native speaker adaptation. Adaptation to different micro-
phones was the focus of Spoke S5. Noise recorded in a car travelling at
55 mph with closed windows and air-conditioning turned on has been digitally
added to read speech to allow noise reduction in Spoke S10. Spoke S9 looked
at data from a potential application for large-vocabulary CSR — spontaneous
dictation of news stories from print-media journalists.

All spokes except S2 and S9 used read speech from the WSJO Sk-word
prompting texts. All spokes except S5 used data from the Sennheiser
microphone.

4. Feature extraction

After the description of the evaluation conditions, let us describe the speech
recognition system, beginning with the feature extraction module.

4.1. Spectral analysis

The acoustic signal is low-pass-filtered and digitized with a sampling fre-
quency of 16 kHz. The following steps are performed for every frame, i.e. every
10 ms:

e Application of a Hamming window to a 25-ms segment.
e 512-point FFT after padding with zero-valued samples.

o Cepstral smoothing of the logarithmic FFT intensities using a sin (x)/x ker-
nel function.

e In the range from 200 Hz to 6400 Hz, sampling at 30 frequency points that
roughly correspond to a Mel-frequency scale.

e Normalization of the 30 spectral intensities with respect to their mean value.
Together with this ‘energy’ value, they form the 31-dimensional acoustic
vector y(f).

To account for varying recording conditions in the dictation task, each
acoustic vector is normalized with respect to the long-term spectrum
as obtained by averaging over a part of the sentence (similar to cepstral
subtraction).

For the recognition of smaller vocabularies, the sampling method is applied
with modified parameters: typical values are 8 kHz sampling rate (with the
obvious modifications of the frequency band definitions) and 10 to 16 ms frame
width.
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In order to capture the temporal structure of the speech signal, each acoustic
vector y(f) is then augmented by slope and curvature information over the time
axis. Thus, the original sequence y(?) of acoustic vectors is replaced by

¥(t) (1)
= [ Y0l= T o -ay |- O
Y'(0) e+ A1) = 2p(t) + y(t — A1)

where the first- and second-order differences were chosen to cover the time
intervals [t — Az, 7] and [t — At, ¢ + At], respectively. The time delay At is
typically 30ms. The new sequence of acoustic vectors x;,...,X7 in a higher-
dimensional vector space serves as input to the subsequent processing steps.
For the first and second differences of the 30 spectral intensities, pairs of ad-
jacent spectral intensities are averaged so that the final vector consists of 63
components: 30 spectral intensities, 15 first- and 15 second-order differences,
and 3 components representing energy and its differences.

4.2. Linear discriminant analysis

Linear discriminant analysis (LDA) is a well-known technique in statistical
pattern classification for improving the discrimination between classes in a
high-dimensional vector space [19]. The basic idea is to find a linear transfor-
mation such that a suitable criterion of class separability is maximized. The
transformation is obtained as the eigenvector decomposition of the product
of two scatter or covariance matrices, the total-scatter matrix and the inverse
of the average within-class scatter matrix. Recently, this technique has been
successfully applied to speech recognition, for both small- [7,20] and large-
vocabulary tasks [21]. :

When applying LDA to speech recognition, the choice of the proper classes
to be discriminated is not obvious — are they whole phonemes, phoneme
states or the mixture components of a state? Our experiments indicated that
the states are a good choice. The computation of the LDA transform is further
complicated by the time alignment problem. Therefore, we use a three-step
training. With our standard iterative training we obtain a segmentation of
the training data, which provides the class labels for the subsequent estimation
of the LDA transform. The third step is a new iterative training using LDA-
transformed acoustic vectors. »

Table II shows the improvement by LDA. Note that since a single class-
independent transformation matrix is used, the matrix multiplication is done
in the acoustic front end once per frame rather than for each log-likelihood
calculation. Experiments on other databases [15] showed that even for
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TABLE 11
Effect of linear discriminant analysis (LDA) on the word-error rate (in %).
About 3h of training material, 4000 densities

Speaker \ No LDA ; LDA
M-60 12.3 104
M-61 15.0 12.3

speaker-independent recognition, one single transformation gives satisfactory
results.

5. Acoustic—phonetic modelling
5.1. Mixture densities

The acoustic conditional probabilities Pr(x;,...,x7/wy,...,wy) are -
obtained by concatenating the corresponding word models, which again are
obtained by concatenating phoneme models according to the pronunciation
lexicon. We use inventories of 40 to 50 phoneme symbols including symbols
for silence and maybe glottal stop. (For the English language, we use triphones
as basic units, Section 5.3.) As in many other systems, these subword units are
modelled by stochastic finite-state automata, the so-called Hidden Markov
Models (HMMs) [3,22,23]. ~

For each state s of the HMM, there is an emission probability density
g(x,|s) of generating the vector x,. The phoneme unit shown in Fig. 2 has a
tripartite structure in order to take account of left and right acoustic depen- -
dences. Each of the three parts consists of two states with identical (or tied)
emission distributions. The transition probabilities, which allow loop, jump
and skip, are tied over all states. Unlike most other HMM structures, this

Fig. 2. Topology of phoneme Hidden Markov Model (HMM).
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structure has a simple duration model whose most likely duration of 60 ms is
close to the average phoneme duration.

No pronunciation variants are used in the pronunciation lexicon, such that
the emission distributions have to model deviations from the standard pronun-
ciation as well as coarticulatory effects. The best results were obtained for con-
tinuous mixture densities

qlx,|s) = ch $)bi(x,ls) with 0<¢(s) <1 and ch (2)

where the so-called component densities b;(.].) are unimodal densities such as
Gaussians or (as in our system) Laplacians:

sl = I () o0 (- S0 e G

nis the index of the vector components. Each density is completely specified by
its location vector ry ;. The vector v of absolute deviations is assumed to be
independent of both the component densities and the states, and thus serves
as an overall scaling for the acoustic vectors.

In contrast to other systems, the Viterbi criterion is used both in training
and recognition. This applies even to the level of mixture components, such
that the sum over the component densities in eq. (2) is replaced by their max-
imum [1].

Table III shows how the error-rate depends on the training-set size and the
acoustic resolution. Monophones (i.e. context-independent phonemes) were
used here; so far, we could only achieve slight improvements with context-
dependent phonemes in German.

TABLE III :
Error-rate as a function of training set size and number of densities. Speaker
M-60, vocabulary size 12073 words, test-set perplexity 113

Training material 0.7h 1.2h 2.0h 3.2h 9.5h
no. of densities

4000 16.1% 14.4% 13.1% 12.3% 11.4%

8000 — 13.4% 12.9% 11.7% 10.8%

16 000 — — — 11.6% 10.1%

32000 e — — — 10.0%

64 000 — — — — 9.1%
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While we typically develop our system on the speaker-dependent German
dictation task, we have also successfully benchmarked our system on both
the speaker-dependent and the speaker-independent part of the well-known
American English DARPA (Defense Advanced Research Projects Agency)
RM (resource management) task [1,15] and on the ARPA Wall Street Journal
(WSJ) and North American Business (NAB) news tasks. The major modifications
of our system and the WSJ benchmark results are described in Sections 5.2, 7.6
and 7.7.

5.2. State tying ¥

Speaker-independent recognition in a very-large-vocabulary task like the
Wall Street Journal (WSJ) and the North American Business (NAB) news
tasks imposes very strong requirements on the acoustic—phonetic modelling
of the recognition system. In order to both improve performance and reduce
the number of densities, a clustering technique has been integrated into the
acoustic—phonetic training procedure of our continuous-density hidden Mar-
kov model (HMM) speech recognizer [24]. The main idea of clustering is to
concentrate what is acoustically similar. For a continuous-density HMM
system, acoustic similarity can be seen at different levels: at the phoneme
level (triphone), the state (or mixture) level and the density level.

Clustering at the first two levels (phoneme and state) leads to model-tying
and state-tying, respectively. It answers the question ‘Which triphones are
acoustically similar?” and helps us to define a reduced set of models to be
trained. It should give us the possibility to avoid the duplication of models,
and therefore reduce the number of parameters of our system. Furthermore,
it can more efficiently exploit the training material, for example, while training -
rarely seen states together with more robust ones. Clustering at this level is also
known in the literature as tying. Having in mind the work at Carnegie-Mellon
University [25] and at Cambridge University [26], we decided to concentrate
on state-tying rather than triphone tying. )

Our state-tying technique is very similar to reference [26]. A furthest-neighbour
criterion has been applied directly to the spectral mean vectors. Whereas the
furthest-neighbour does not quantify the soundness of a rarely seen model, it
takes the spectral mean vectors as they have been observed. The distance measure

max
d(Ci> Cj) = mp€CimeC; I:Z (|mk,c - nl,cI):l (4)

calculates the distance between two clusters C; and C;, where each cluster is
defined by a set of mean vectors my, and n;. Two clusters are clustered together
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if their distance lies below a certain threshold. The new cluster will be the
union of the original clusters.

5.3. Experimental resulls

e

Table IV presents results for dlfferent initial numbers of states and different
thresholds on the maximum diameter of a cluster (‘cluster threshold’) using the
furthest-neighbour criterion. The training set used for these experiments is the
so-called WSJO training set summing up to around 15 hours of speech equally
balanced between male and female speakers. Our base system (WSJ0-a) is the
non-tied system optimized for the 5000 word vocabulary WSJ benchmarking
test from November 1993 [16]. The optimal number of triphone-states for our
base system had been set to 2208 + 130 triphone and monophone states,
respectively. As can be seen from the first two lines of Table 1V, applying
state-tying led to a reduction of the number of densities by a factor of two
without changing the total word error rate over three test sets. These three
test sets consist in total of 20 774 pronounced words.

State-tying allows to group together triphones which are acoustically similar
but not necessarily often seen. The consequence is that more triphones can be
modelled: the triphone coverage of the test set lexicon will be higher. We
increased the number of triphones to be modelled and found an optimum at
1855 triphones (1855*3 = 5565 states), which defines our second system
(WSJO0-b, lines 3 and 4 from Table IV). This leads to word error rate improve-
ments of more than 6% on the same sct of test sets, when compared to the
WSJ0-a system.

As stated above, the optimal number of triphones modelled on the WSJO
material was 1855. We give hereafter results while modelling all 7836 triphones
seen during training. A drawback in modelling all triphones present in a train-
ing set is that there is no observation left to model backing-off monophones.
During recognition, a decision has to be taken: To which trained model will
be assigned the untrained but essential new triphone? Decision trees are often
used at this place.

Our solution was very pragmatic: we took from our WSJ0-b system the
monophone backing-off models, properly re-scaled, and added them to our
all-triphone system. As can be seen from Table IV, the word error rate
(WER) increased significantly with respect to our WSJ0-b system and goes
back to the WER level of our WSJ0-a system. To interpret the result, it has
to be observed that from the 7836 different triphones occurring in the training,
3781 occur less than 10 times. Our conclusion is that under a certain occur-
rence threshold (that is 35) state-tying results in a splitting of rarely seen
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training material (that would otherwise be globally modelled in a mono-
phone) and leads to less robust modelling.

~ The next step was to build our models on the bigger WSJO+1 training set
totalling 62 hours of speech. To augment the triphone coverage on the recog-
nition vocabulary, we included right context diphones to our triphone list
(4087 triphones and 557 diphones). The backing-off monophone models
were seen on average 350 times. Table V shows that by state-tying an improve-
ment in the WER by more than 7% for about the same amount of densities has
been achieved on the evaluation set of November 1993. This is mostly due to
the triphone coverage ratio increase on the test set, from 90 to 99.6%.

6. Language modelling

The language model provides, for each word sequence, an estimate of prob-
abilities Pr(w;, . ..,w,) usually expressed by m-gram models (cf. below), which
have established themselves as both a good way to reliably estimate the para-
meters and to keep them limited so they can be stored and retrieved. In view
of the sizes of available corpora, we typically use word bigram models or a
category-based bigram models (bigram class models) with automatically
generated classes [27]. An overview about more general techmques in language
modelling can be found in reference [28].

While maximum-likelihood estimation would suggest taking relative fre-
quencies of bigram counts, it is common knowledge that these are particularly

TABLE V
Bigram word error rates on the evaluation test set 93 with and without state-
tying for the same number of densities. Training was done on WSJ0+1

Init. no. of states 5592 18276
Cluster threshold 0 16
No. of states after tying 5722 4166
No. of densities (male + female) 523k 495k
20k eval_93 17.7% 16.4%
Test-set triphone coverage 90% 99.6%
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bad as estimates and that smoothing is important. The smoothing method that
we use is different from those used in other systems and is explained in the fol-
lowing section in more detail. With this method, we achieve better results than
with backing-off or linear interpolation.

6.1. Stochastic bigram and trigram models

The task of providing probabilities Pr(wy,...,w,) >0 is usually reduced to
the problem of estimating conditional probablhtles Pr(w;|wy,...,w;_y) with
given history wy,...,w;_; which determines the joint prObdbllitiCS by the
product

n
Pr(wy,...,w,) = HPr(wj|w1 s Wis1)
j=1

Because of the limited training data one has to share the same distribution
for different histories, e.g. histories which coincide with the last m — 1 posi-
tions. Depending on the amount and structure of training data we typically
use only m-gram models with m = 2 (bigram) or m = 3 (trigram). Even for
such small history lengths there are a lot of possible bi- or trigram events which
have not been observed during training before. So we are faced with the pro-
blem of guessing a non-zero probability for an event which has never been
observed before. To do this in a serious way we have to use further knowledge
about the stochastic process we want to describe.

Beside the well-known technique of linear interpolation, the theory for most
of the commonly used estimators was established in 1953 by Good [29] who
worked out an idea of Alan M. Turing; but in order to come up with practi-
cally useful ‘Turing-Good’ estimators one has to use some kind of smoothing.

The non-linear interpolation scheme used in our system has the advantage
to do this in a way which is easy to implement. More precisely, in the case of
bigram and trigram models [30], it is possible to make a first-order approxima-
tion of the Turing—Good formula which simplifies it to subtracting a constant
d (typically between zero and one) from counts greater than d. Redistributing
the gained probability mass to some a-priori distribution ¢ leads to the concept
of non-linear interpolation as introduced by reference [31]. /

To be more explicit, e.g. for a bigram application, let us denote the count of
some bigram (v,w) in a given training corpus by N(v,w). Then we may define
the estimator for a bigram language model by ’

N.w) =d 48 40%) i Ny ) > d
N(v)
pivl) =1 | (5
N(Z)) -q(w) if N(v,w) <d
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if N(v) := X, N(v,w) is assumed to be positive and 3, is chosen so as to assure
the constraint ¥,p(w|v) = 1. Here ¢ is usually chosen to be a unigram distri-
bution. Defining a discounting function 8(v, w) := min{d, N(v, w)} we easily
get 3, = X,08(v, w) as well as

p(W|U) — N('Uv W) - 63:)77(2})) + ﬁv ) ‘I(W) (6)

which describes a general interpolation scheme between ¢ and the relative fre-
quency distribution. The name non-linear interpolation indicates the difference
from the well-known linear interpolation with parameter o which appears if we
choose (v, w) := aN (v, w).

6.2. Application-specific experimental results

From the theoretical derivation it is clear that non-linear interpolation is
designed to incorporate different statistical knowledge (e.g. about unigram
and bigram) in a way which respects the advantage of the Turing-Good esti-
mator of providing better estimates even with relatively small training data.

In fact, in practice there are typically only small training corpora available
which reflect the application and the speaker-specific characteristics. To com-
pare the performance of non-linear interpolation and linear interpolation, we
took spoken sentences from two lawyers (M-60 and M-61) and two radiolo-
gists (M-72 and M-73), as well as a larger corpus of written radiology reports
(REP; see Table VI) to calculate the different test-set perplexities. (Recall that
the test-set perplexity of a given language model on a test text wy,...,w,
isdefined as | ITL; P(w;|wy, ..., w;_1) ] =1/ and that the logarithm of perplexity
can be viewed as the empirical entropy for the actual test set.) As seen in Table
V11, in all cases non-linear interpolation yields significantly lower (i.e. better)
perplexities than linear interpolation. Furthermore, the relative gain becomes
smaller for larger training material.

TABLE VI
Data sizes in words for specific applications
Data Test LM Training Lexicon
M-60 2781 61130 12073
M-61 3039 71208 15188
M-72 2095 50192 13095
M-73 2296 54375 13095

REP 569767 915858 40630
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TABLE VII
Test-set perplexity for different discounting methods
Bigram-LM Linear Non-linear
M-60 127.0 112.2
M-61 206.4 183.2
M-72 299.8 286.9
M-73 474 41.9
REP 97.4 91.9

It should be noted that the unigram distribution g used in the experiments
was also calculated with a non-linear interpolation scheme using a uniform
distribution as background knowledge (Table VIII).

Of course all techniques may be applied also to trigrams using a conditional
bigram distribution as the general background model. Even for small corpora
it is possible to have a gain in perplexity if the training material gives a good
coverage of frequently used phrases in a very special application (Table VIII).

To indicate that there is a great difference between specific well-tailored
training material and general application-specific data, we used the unigram
and bigram models trained on written radiology reports (REP) to calculate
test-set perplexities on spoken radiology reports of M-72 and M-73. To
make test results comparable with Table VIII, we used the lexicon of the M-
72/M-73 corpus.

Tables TX and VII show that the language models trained on a small-sized
corpus of speaker-specific sentences that were transcribed as spoken (‘as-it-is
files) perform much better than the models trained on the larger speaker-
independent written text. This seems to indicate that specific data material
is more important than some general kind of knowledge. Another reason

TABLE VIII
Test-set perplexity for m-gram language models (m=123)

Non-linear Unigram Bigram Trigram

M-60 818.9 112.2 81.2

M-61 933.4 183.2 151.2

M-72 1065.9 286.9 264.3

M-73 531.8 41.9 30.7

REP 832.4 , 91.9 66.5
338 Philips Journal of Research Vol.49 No.4 1995
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TABLE IX
_Test-set perplexities when using only written training corpora (‘REP’: without
data as being dictated)

Test set : Unigram Bigram
M-72 1822.5 705.2
M-73 1599.3 365.1

for this effect might be the general difference between spoken and written lan-
guage. Most obvious examples for this difference (like abbreviations and punc-
tuation) stem from some kind of mismatch between the words in written and
spoken text.

6.3. Perplexity gain for large corpora

Although the techniques just presented perform quite well with small train-
ing material, there is still a strong gain in perplexity when using larger training
corpora. To see the dependence between language model performance and
training size we took differently sized subcorpora of up to 39 million words
from the well-known Wall Street Journal corpus.

Figure 3 shows the significant loss in performance when only small corpora
are used for training: The more (application specific) data, the better. This is
even more true for a trigram model. ’

Figures on a trigram LM on a large corpus are given in Table XI. For more
information on the experimental conditions, cf. Sections 3.3.3 and 7.7.5.

7. The search procedure

Time-synchronous beam search has successfully been used in the Philips
continuous-speech recognizer for several years [32]. We found thatitis efficient
also for 10k or more words [33]. First, all knowledge sources are available at
the same level in the integrated search. Second, all hypotheses refer to the same
acoustic vector sequence in time-synchronous search. These two key points
allow a drastic reduction of the actual search space by pruning less promising
hypotheses. A PC based implementation [34] underlines the efficiency of this
search strategy.

Recently, we increased the vocabulary size in connection with our NAB
benchmark system up to 64k words. Qur positive experiences are described
in the last section.
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7.1. Tree lexicon

A straightforward approach to constructing the search space is to synthe-
tically build up word models from concatenating the appropriate phoneme
models as given by the pronunciation lexicon. In this space, different copies
of the same phoneme occur due to the lexical constraints. For similar reasons,
the language model restrictions make it necessary to introduce several copies
of the same word, representing contexts that allow for different continuations.
This organization, where each state belongs to exactly one word, will be called
linear lexicon.

When the lexicon becomes larger, e.g. from 1k to 10k words, it is more
efficient to arrange the pronunciation lexicon as a tree of phonemes (tree lex-
icon). The compression factor for the tree lexicon as compared to the linear
lexicon is even surpassed by the reduction in the number of active states,
because most of the active states are located in the word beginnings (near
the tree’s root).

7.2. Forest search

The tree organization of the lexicon also has an undesired consequence for
the organization of the search space. In contrast to a linear lexicon, the word
identities are unknown at the word beginnings. Particularly for a bigram
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language model, this means that separate tree copies have to be held, depend-
ing on the predecessor word. While the potential search space is blown up by a
factor of the vocabulary size, e.g. 10k, the actual search space grows much
more moderately, typically by only a factor of 2. The tree organization is
thus very beneficial for large-vocabulary tasks. A detailed discussion with
experiments is given in reference [33].

7.3. Phoneme look-ahead

The phoneme look-ahead additionally reduces the number of active states
by estimating whether a started phoneme will or will not survive the next
few time frames (in our system typically 60 ms). In a first step, the likelihood
of each phoneme ahead of the current time frame is estimated by carrying
out a time-alignment. Then, each time a state hypothesis crosses a phoneme
boundary, these figures are utilized for probability estimates for the best
path extensions both of this and of any other state, which in turn are used
to perform an additional pruning [35].

For the phoneme look-ahead, the original phoneme models are used with-
out any simplification. Note that, in particular for the case of monophones,
the number of generic states is much smaller than the number of state hypoth-
eses. (Conversely, a non-modified application to a system with many triphones
is not advantageous.) The likelihood scores® are stored for later use in the
detailed match. Like the conventional search, the look-ahead is sped up by
beam pruning; in addition, there is no need for book-keeping as in the detailed
match. To further reduce computation, the look-ahead is carried out only
every other time frame. For the omitted time frame, the look-ahead scores
of the previous time frame are used.

7.4. Peaks in the search space: histogram pruning

Conventional beam pruning uses a pre-specified constant threshold to spe-
cify the beam of active hypotheses: at each time frame, exactly the hypotheses
with log-probabilities close enough to the optimum at that time remain active,
i.e. are considered for expansion at the next time; the others are pruned.

When the pruning threshold is chosen to be large enough to avoid search
errors, i.e. when the optimal path is only rarely being lost due to pruning, large
peaks in the actual number of active hypotheses can occur. We frequently
observed peaks of 1 or 2 million hypotheses, and roughly 100 times larger

6 We use the word ‘score’ for negative log-probabilities.

Philips Journal of Research Vol. 49 No.4 1995 341



V. Steinbiss et al.

than the average number of hypotheses, especially for non-speech sounds or
corrupted speech.

We thus introduced an additional pruning criterion: a pre-specified upper
limit on the number of active points. We called this histogram pruning because
we use a histogram on the hypotheses’ scores in order to determine a pruning
threshold (below a given value) such that the number of active hypotheses
remains always below a given maximal number of active hypotheses.

Quite astonishingly, the experiments indicated that it is possible to choose
relatively small maximal numbers for the hypotheses without introducing
search errors. A typical value is 30 000 hypotheses maximum for our dictation
research prototype. Besides the significant reduction in peak storage size
needed, there is a reduction in the average search costs of about 30%. A
detailed description of the experiments is given elsewhere [36].

7.5. Language-model look-ahead: smearing the expected LM probabilities over
the tree

In the forest search organization for stochastic n-gram language models
(n> 1), the potential search space consists of a large number of copies of the
phonetic tree consisting of the recognition vocabulary. E.g., for a vocabulary
of ¥ words and a bigram LM, i.e. n = 2, there are y™*! = Vecopies of the pho-
netic tree. Informal experiments indicated that, due to beam pruning, the num-
ber of active hypotheses grows much smaller with #, like roughly a factor of 2
when going from unigram to bigram LM.

The word identities in the tree are only known at the word ends. Adding the
LM log probabilities at the word ends leads to several effects that are disad-
vantageous for the search:

e Ascompared to linear search, the LM is employed with one word delay; but
knowledge should be incorporated as early as possible.

o The scores of hypotheses change drastically when a word end is encoun-
tered. Especially, the pruning has to be larger than the largest LM score
(‘score’ being defined in this paper as negative log probability).

o The same effect causes the examination of many useless word start hypoth-
eses during silence after a word.

A remedy for all these pains is the incorporation of the LM scores as early as
possible. For this purpose, in each search state, we introduce a new pruning
criterion: instead of the usual score, we always investigate its sum with the
minimum of the LM scores of all possible word continuations. A practical
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implementation and experimental results are described in reference [36]. We
achieved reductions in search space by factors of 3—5 with this method.

7.6. Lattice rescoring for longer span language models

In this and the following section, two different kinds of word lattices or
word graphs are introduced, which we call word lattice (Section 7.6) and
word graph (Section 7.7), respectively. Please note that the nomenclature is
not standardized in the literature.

7.6.1. Basic concept

During our first tests with forest search, we made informal experiments indi-
cating that forest search works not only with a bigram LM but also with a tri-
gram LM, with only moderate increase of the active search space by an
additional factor of roughly 2. However, for the recognition with a trigram
LM, we decided to choose a different approach with a search effort about
the same as for a bigram LM. In this two-step approach, a word lattice is first
generated with a bigram LM and subsequently rescored with a trigram LM.
The approach is open to employ more complex LMs in this post-processing
step.

7.6.2. Generlztion of the word lattice

In the recent past, the use of word lattices or word graphs has become quite
popular among the various search techniques applied to large-vocabulary con-
tinuous speech recognition [16,37-39)]. The main idea about word graphs is to
come up with word alternatives in regions of the speech signal where the ambi-
guity of the recognition is high and to apply subsequently more elaborate
knowledge sources within this narrowed-down search space.

A word lattice can be efficiently generated with only minor modifications of
our time-synchronous beam search algorithm based on a tree lexicon. It essen-
tially amounts to collecting the information about word-endings as they occur
in the course of the left to right decoding process. This first pass simulta-
neously provides the best bigram-scored sentence hypothesis, the lattice over-
head being virtually negligible in terms of CPU time.

As opposed to the word-graph generation technique presented in reference
[38], here we take full advantage of the bigram LM to constrain the lattice,
without requiring any further optimization stage. More precisely, our analysis
relies on the assumption that the position of a word boundary depends only on
the word pair under consideration and not on further predecessor words. This
simplification has been successfully used by BBN in their word-dependent
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N-Best algorithm [40] and is also known as the ‘word-pair approximation’
[41]. E

Therefore, in the present study the lattice is defined as a time-structured list
of word hypotheses consisting of word identity, start and end time, acoustic
score and predecessor word identity. It has to be stressed that the collection
of word-ending information is done before the bigram LM recombination
takes place, to preserve as much as possible different word sequences for sub-
sequent use with a higher-order LM.

The computational complexity of this first pass is nearly identical to that of
our bigram beam search, the efficiency of which has been further improved by
the new handling of the LM probabilities (see Section 7.5).

7.6.3. Trigram rescoring of the lattice

In this second pass, the trigram language model is applied to the lattice
at the phrase level. More precisely, the acoustic probabilities of the word
hypotheses are combined with the trigram probabilities taking account of
the predecessor word as computed in the first pass. Searching for the optimal
rescoring still proceeds time-synchronously and uses a Dynamic Programming
(DP) recursion taking account of all time and predecessor constraints con-
tained in the lattice [41]. The final output is the best trigram-scored sentence
hypothesis under the lattice restrictions.

The optimality of this procedure (in the Viterbi sense) is preserved only
under the following two conditions: the word-pair approximation for the posi-
tion of a word boundary has to be valid and next, the beam used for generating
the lattice must be wide enough to keep enough phrase hypotheses for subse-
quent trigram rescoring.

In practice, this algorithm appears to work well with relatively modest lat-
tice densities. The computational costs are quite small since this second pass
does not require any further acoustic scoring at the state level. This follows
from the word-pair assumption which implies that the word boundaries
have already been optimized in the first pass.

Moreover, a careful list organization allows the achievement of great effi-
ciency (without requiring the cashing of the LM scores) to such an extent
that the trigram rescoring represents only a few percent of the main bigram
decoding CPU time.

7.7. Word graph search

In the method described in the previous section, the segmentation points
optimized by the bigram decoding together with the acoustic scores of
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respective word hypotheses are used as such during the trigram search, with-
out having to compute a complete scoring at the 10-ms level again. Hence, a
good decoupling is achieved between acoustic and syntactic levels since the
long-span LM search is performed at the phrase level in a post-processing
step.

However, the exact influence of the underlying word pair approximation is
unknown and also, the use of different acoustic models implies that the word
boundaries and scores have to be re-evaluated anyway. This concerns, for
example, the integration of cross-word acoustic models or the use of an
unsupervised speaker-adaptation scheme together with the best language
model available. Therefore, we have implemented a general graph-search
procedure either to perform ‘full’ trigram decoding or to efficiently implement
more detailed acoustic models.

7.7.1. Construction of the word graph

Our starting point consists of the bigram lattice described in the previous
section (also [2]). This is nothing but a time-structured list of word hypotheses
consisting of word identity, start- and end-time, acoustic score and pre-
decessor word identity. To represent all these word sequences by a graph
data structure, the definition of a node has to be specified, each arc being a
word hypothesis. Two cases have been considered.

In the general case, a node is simply a time-mark. This means that all word
hypotheses ending at time ¢ are pointing to the same node and might be
followed by any word starting at 1+ 1 in the word graph.

However, the success of the search algorithm [42] suggests that the predeces—
sor word identity provided by the bigram decoding might be used to constrain
the word graph without impairing the next pass. When this predecessor word
dependence is to be kept, a node is defined as a pair [time, predecessor-ID]. In
this ‘bigram-constrained” word graph, the predecessor information is thus
used to restrict the connections between succeeding words. Application of
this constraint is supported by the observation that if a particular word pair
has a very small (bigram) LM probability, any m-gram (m>2) including
this word pair is likely to be also of very small probability.

On the other hand, we are no longer interested in the time and score infor-
mation as we now intend to perform a full decoding at the 10-ms level, possibly
using different acoustic models. Instead, we want to get rid of all copies of
words occurring in the same contexts at consecutive time frames since they
do not bring anything new in terms of syntactic richness and they will only
" burden the graph search process. To eliminate these copies of words appearing
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in the same contexts, nodes that are closely spaced in time are merged using
several reduction rules. This provides a very significant ‘compaction’ of the
word graph.

7.7.2. Cross-word triphones using word phonetic networks

For each arc in the graph, a word model has to be specified in terms of ele-
mentary acoustic units. These are typically triphones conditioned on the left
and right phonemes. When cross-word co-articulation effects are explicitly
taken into account, the triphones at the beginning and end of a word depend
on the neighboring words as given by the graph structure. Therefore, multiple
triphone instances are created at the initial and final positions of a word
model, the number of which depends on the local graph characteristics.
Note that for the bigram-constrained word graph there is only one predecessor
context.

Alternative pronunciations are introduced by allowing the substitution and
skip of particular phones. Cross-word-dependent assimilation rules are also
used to model ‘hard’ pronunciation changes that occur at word juncture
[43], for example when a phone is completely deleted like in “... receive(d)
the ...’. As a result, a phonetic network is built up for each word hypothesis
and inserted in the graph together with optional between-word silence models.

7.7.3. Decoding

Decoding proceeds from left to right using a time-synchronous search algo-
rithm with a beam-pruning technique. However, the word graph has first to be
expanded with respect to all contextual constraints introduced by either the
LM or the cross-word models. For an m-gram LM, words appearing in dif-
ferent contexts have to be duplicated to keep track of all hypotheses differing
in their final (m — 1) words. Consecutive word arcs are then connected with
language transitions whose probabilities are given by the m-gram LM. In
the case of a trigram-LM, for example, separate arc copies are made for
each predecessor word and are recombined at the end of the succeeding
word. This implies that if the word graph exhibits a /ocal branching factor
of b, with b arcs pointing to and leaving each node, b* language transitions
are requested which leads to a prohibitive number of arcs in the region of
the sentence where the ambiguity of the speech signal is high.

So far, this problem has been solved mainly by relying on the back-off prop-
erty of the LM, i.e. by duplicating an arc only if the corresponding m-gram has
been taken explicitly into account by the LM [37,39]. Our solution consists of
two parts:
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o First, the word graph is expanded dynamically on demand, that is, only
when a word-end hypothesis is reached and kept active within the beam.

e Second, bigram-constrained word graphs are used that request only 5* lan-
guage transitions for a trigram LM since the predecessor dependence has
already been integrated.

7.7.4. Experimental results: impact of word pair approximation and predecessor
constraint

To get some measure of the accuracy loss introduced in trigram decoding
either by the word pair approximation or by the predecessor constraint, sev-
eral graph search strategies have been tested on the November *92 WSJ evalua-
tion set (4 males, 4 females, 5k and 20 k vocabularies).

We first generated word graphs of high density using our standard bigram-
LM beam search to ensure that the spoken word sequences were included in
the word graphs whenever possible, i.e. in the absence of Out-of-Vocabulary
(OOV) words. The details of the acoustic modelling and training are described
in reference [16]. Then, trigram decoding has been performed under three dif-
ferent search conditions, all other things being identical:

o First, we used the phrase level search algorithm relying on the word pair
approximation.

e Next, we applied the ‘full’ graph decoding procedure with large beam
widths to a general graph data structure obtained from the original bigram
word graph.

e Third, the same procedure was applied to a bigram-constrained word graph
that preserves the predecessor information of the original bigram decoding,
however, without time and score information.

Table X summarizes the recognition results at the word level, obtained with
a trigram LM for 5k and 20 k vocabularies. For each test condition, the word-
error rate is given together with both the average and maximum numbers of
word arcs expanded per sentence in the course of the graph-search process.
The following conclusions can be drawn:

e The word-pair approximation introduces a relative degradation of less than
2% and we did observe that essentially short words are affected.

e Compared to general word graphs, bigram-constrained word graphs
achieve the same precision.
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TABLE X
Trigram results on the Nov. *92 Wall Street Journal (WSJ) test sets

Algorithm Word-error rate Av. no. of arcs Max. no. of arcs

5k Closed vocabulary

Word pair 4.90% — —
General graph 4.75% 5000 108 000
Bigram graph 4.75% 1300 18000

20k Open vocabulary

Word pair 11.9% — —
General graph 11.8% 7000 114 000
Bigram graph 11.8% 1400 14300

o The number of arcs expanded during search is drastically reduced in the last
case due to the very low branching factors of bigram-constrained word
graphs.

7.7.5. Experimenial results: 64 k-word trigram and speaker adaptation

Using the full graph search procedure, we can combine trigram decoding
with incremental speaker adaptation. The principle of incremental unsuper-
vised speaker adaptation amounts to updating the acoustic models after each
spoken sentence by using the alignment between the speech signal and the
recognized word sequence. The success of such a scheme depends partly
upon the correctness of the recognition, hence the interest in taking the best
available LM.

This technique has been applied to the North American Business (NAB)
corpus which contains read articles taken from several newspapers with an
unlimited vocabulary. To achieve a high coverage, a vocabulary of 64k words
has been taken. Both the development and the evaluation set include 10 male
and 10 female speakers, each having uttered 15 sentences of about 25 words
each.

In our system, the acoustic models are based on mixtures of continuous den-
sities, and so far the adaptation scheme has concerned only the mean vectors
[44], the mixture weights being kept fixed. Table XII summarizes the 64 k-word
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TABLE XI
NAB ’94 (North American Business news) coverage and perplexity for 64k
vocabulary

Set No. of words % OOV  Bigram perplexity Trigram perplexity

Dev 7387 0.53 230.0 137.2
Evl 8186 0.79 231.3 ’ 137.6

recognition results. Table XI gives some information about the LM conditions
such as coverage and perplexity.

The density of the word graphs is expressed in terms of the average number
of word hypotheses per spoken word. Note that for the evaluation set we used
much larger beam widths to minimize the risk of search errors. The average
number of arcs expanded per sentence during the trigram graph-search is
also given together with the real-time factor of the decoding on a DEC Alpha
work-station. About 75% of the CPU time is actually devoted to the log-
likelihood computations. Speaker adaptation yields a relative improvement
of about 5% while a trigram reduces the errors by about 20% with respect
to a bigram LM.

8. Summary

We have described the large-vocabulary continuous-speech recognition sys-
tem of the Philips Research group for speech recognition. The system shows
state-of-the-art performance on several different benchmark tests. One of
them, the North American Business news evaluation of 1994, has been
described in more detail. :

In the paper, we have concentrated on the features that are distinctive to our
system: (1) In acoustic modelling, non-smoothed continuous mixture densities
are used. The Viterbi criterion is consistently applied both in training and

TABLE XII
NAB ’94 recognition results for 64 k vocabulary (WER = word error rate)

Set Bigram-WER Word graph Trigram-WER No. of arcs Real-time

density
Dev 14.7 38 11.7 6.2k 1.8
Evl 14.8 108 11.5 24.5k 3.2

Philips Journal of Research  Vol. 49 No. 4 1995 349



V. Steinbiss et al.

TABLE XIII

List of abbreviations
ARPA Advanced Research Projects Agency
CCcCC CSR Corpus Coordinating Committee
CSR Continuous-Speech Recognition
DARPA Defense Advanced Research Projects Agency
FFT Fast Fourier Transform
HMM Hidden Markov Model
LDA | ,« Linear Discriminant Analysis
LM Language Model
NAB North American Business News
0101 Out-Of-Vocabulary words
TI Texas Instruments
WER Word-Error Rate
WSJ Wall Street Journal

testing. (2) The n-gram language model uses non-linear interpolation to cope
with unseen events in the training corpora. (3) Time-synchronous beam search
is applied to a tree-organized lexicon in connection with a phoneme look-
ahead; in an optional subsequent step, a word graph or word lattice can be
rescored using additional stochastic knowledge sources, namely a finer acous-
tic or language model. '
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