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ABSTRACT- In this paper, the dynamic-programming algo-
rithm for continuous-speech recognition is modified in order to obtain
a top-N sentence-hypotheses list instead of the usual one sentence
only. The theoretical basis of this extension is a generalization of
Bellman'’s principle of optimality. Due to the computational complex-
ity of the new algorithm, a sub-optimal variant is proposed, and ex-
perimental results within the SPICOS system are presented.

0 INTRODUCTION

The output of a continuous-speech recognition system using Vi-
terbi decoding is the word sequence associated with the most likely
hidden Markov model state sequence. In the continuous-speech data-
base query and answering system SPICOS, this word sequence is
passed to a language-interpretation module. Subsequently, data-base
query evaluation, answer generation and speech synthesis have to be
carried out in order to produce a spoken answer.

If, in the case of a speech recognition error, the recognized sen-
tence cannot be parsed or interpreted, the system may have to stop at
this point as no further information is available from the recognition
module. So, itis desirable that the speech-recognition module does not
pass one sentence only but a list of sentences instead which are most
likely to have been uttered. For the level-building algorithm, an ap-
proach to the top-N decoding problem has been proposed in [5]. -

The subject of this paper is to modify the one-stage dynamic-pro-
gramming search algorithm in order to produce atop-N list of sentence
hypotheses. The memory and computation-time requirements of the
exact approach seem to make its use in a system rather difficult, There-
fore, in chapter 2, a sub-optimal approach with only moderate con-
sumption of storage and processing time is described. The
performance of this approach is subject to the experiments discussed
in section 3.

1 A GENERALIZATION OF BELLMAN’S PRINCIPLE
OF OPTIMALITY TO TOP-N WORD SEQUENCES

1.1 Bellman’s Principle of Optimality: The Optimal State
Sequence

Viterbi decoding in connected-speech recognition solves the fol-
lowing problem: Given a hidden Markov model (HMM) ([1], [6]1), find
the state sequence which most probably has produced the observed
input Y = y(1), ..., y(T). The word sequence W associated with this
state sequence might be sub-optimal in the sense that it does not max-
imize the likelihood p(W,Y) ([1]); nevertheless good results have been
obtained with Viterbi decoding, and it is also used within the SPICOS
system (cf. section 3).

The problem can be reformulated as to find a state sequence (also
called "path’) which minimizes an additive cost function;

Over all paths s(0), ..., s(T) from a beginning state sg =s(0) to a
final state s = s(T), minimize

T
t:‘:l c(t, s(t-1), s())

- where é(t, i, j) are the costs of moving from state i at time t-1 to state

j at time t. This cost function depends on the underlying model: In the
HMM approach, itis the negative logarithm of the probability of going
from state i at time t-1 to state j at time t and of producing the output
y(t). As in the dynamic time warping (DTW) approach, it might just
as well be some distance between a reference vector and the observed
vector y(t), plus a time distortion penalty. We are not limited to either
of these interpretations but would like to describe, as generally as
possible, the dynamic-programming (DP) recursions (this section) as
well as their generalization to generating top-N hypotheses lists (sec-
tions 1.2. and 1.3.).

In order to find the optimal state sequence through S states there
is no need to evaluate all of the S possible paths. Indeed, Bellman’s
simple but powerful principle of optimality ({2]) states that if the op-
timal state sequence from s(0) to s(T) passes through state s(t) at time
t, then it includes, as a portion of it, the optimal state sequence from
8(0) to s(t). In other words, a non-optimal partial path can never be part
of the global optimal path.

Denote by P(t,s) = s(0), ..., s(t) the optimal path from sp = s(0) to
state s = s(t) (or an optimal path; for conciseness, we will not consider
non-uniqueness here nor do we define the case when there is no path
tos=s(t) ("infinite costs")), and denote its accumulated costs by C(t,s).
The global optimal path P(T,sg) from beginning state sg to final state
sg and its accumulated costs C(T,sg) can be calculated recursively by

Initialization:
0 :s=sp
C@.s) =
©s) {inﬁnity : else o)
P(0.s) = {SB :s=sB
empty :else 2)
Recursionovert=1,..., T:
C(ts) = misq (C(t-1,8") +c(t.s'8) ) 3
P(t,s) = P(t-1,s’)°s is the state sequence obtained @)

by concatenating P(t-1,s’) with s, where s’
is the predecessor state that minimizes (3)

Fig. 1 illustrates how the optimal path P(T ,sg) is obtained by suc-
cessively following the minimizing arguments s’.

Note that, in this general case, the complexity of calculating
C(T,sg) drops from S™ % to S«(T-1).

1.2 Top-N State Sequences

The optimality principle is generalized from seeking the optimal
state sequence to secking the top-N state sequences simply as follows:
If, forn =1, ..., N, the n-th best state sequence from s(0) to s(T) passes
through state s(t) at time t, then it includes, as a portion of it, the m-th
best (with some m € {1, ..., n}) state sequence from s(0) to s(t). In
other words, a partial path not among local top-n can never be part of
the global n-th best path,



states s

time t

— best path P (T,s.)

Fig. 1: In standard dynamic-programming search, the optimal path
P(T,sg) is obtained by successively following the values for s’ that
minimize formula (3).

Let Pn(t,s) denote the n-th best path from sp = s(0) to s = s(t) and
let Cn(t,s) denote its accumulated costs. Then the recursion is:

Initialization:
0 :n=1 and s=sg
Cn(0,)5) =
n(0.5) infinity : else )
s :n=1 and s=sg
Pn(0,5) = { ;
n(0:5) empty :else ©
Recursion overt=1, ..., T:
Let,forn=1,..,N,
Cu(t.5) =min,( Co'(t-1,8") + c(t,5",9) | %)

Pn'(t-1,5")°s # P(t,s) for all m<n).

(1. e., the minimum is taken over those state sequences, consisting of
a specified partial path and state s = s(t), which are not yet in the local
top-(n-1) list. Note that there is no restriction forn = 1)

Pn(t,s) = Pr(t-1,8")s , where n’,s’ minimize (7).

®
Fig. 2 illustrates how to obtain the n-th best path.

states s

time t

— best path P, (T,s)
2nd best path PZ(T'SF)

Fig. 2: This figure illustrates how, for N=2, the top-N paths are ob-
tained by successively following the values for n’ (position in local
" top-N list) and s’ (preceeding state) that minimize formula (7).
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1.3 Top-N Best Word Sequences

A top-N list of state sequences is not yet what we want - it might
result from different time alignments of only one word sequence. In
order to get a list of top-N word sequences one must, during recombi-
nation, take into account for each state sequence P the word sequence
W(P) associated with P. Accordingly, while the initialization remains
as (5) and (6), the recursion formulae have to be changed as follows:

Recursionovert=1,...,T:
Let,forn=1,...,N,
Cn(ls) = r{msr; ( Cn'(t-1,8") + c(t,5°,8) |
” WPR(t-1,8")s) # W(Pm(t,s)) for all m<n)

©

(The minimum is taken over those state sequences whose associated
word sequence is not yet in the local top-(n-1) list.)
Pn(t,s) = Pn(1-1,8)s , where n’,s’ minimizes (9). (10)
Eventually, the same optimal state sequence P1(Tsg) and word
sequence W1 := W(P1(T,sp)) are obtained as in the preceeding sec-
tions, In contrast to the preceeding section, P2(T sg) here is the opti-
mal path among all paths with an associated word sequence different
from Wi, etc.

2 A SUB-OPTIMAL VARIANT OF TOP-N DYNAMIC
PROGRAMMING

Using the recursion formulae (5), (6), (9) and (10), the usual one-
stage dynamic-programming algorithm (cf. [12], [3], [7]) can be mod-
ified in order to obtain a top-N sentences hypotheses list instead of one
sentence only. For an efficient implementation, the following seems
10 be important:

A fast access to the word-sequence list associated with a point in
the search space. This can be realized by constructing a tree con-
taining all possible partial word sequences so far seen and hand-
ling only its node labels within the recombination.

A fast sorting or merging procedure for the recombination of top-
N lists.

As the search space is rather big - though using a pruning strategy,
in SPICOS several thousand points have to be processed for every cen-
tisecond of speech - the extra effort for getting top-N sentence hy-
potheses instead of one sentence seems to be rather high. This relates
to the computational costs for the recombination as well as to the
storage of top-N lists. Therefore, we propose a sub-optimal variant of
top-N DP by restricting the extended recombination (formulae (9) and
(10)) to the syntax Ievel and letting the in-word recombinations be the
standard ones (formulae (3) and (4)). The effects of this clearly sub-
optimal strategy are discussed below. Its advantage with respect to the
exact top-N DP search is the reduced computational and storage com-
plexity, because most interactions are in the word interiors. Experi-
mental results are presented in section 3.

The proposed approach ignores the fact of in-word recombina-
tions: It does not obtain the exact solution, i. e. the best path giving the
n-th best word sequence, if and only if this path recombines some-
where inside a word with a better scored path. Whereas on the syntax
level all necessary information about the (locally) top-n word
sequences is stored, only best decisions are regarded inside words (on
the state level). That means the algorithm finds a sub-optimal solution
only.

To see in more detail what happens in such a case, regard fig. 3
as an example which shows a part of the search space. Inside any of
the words u, v, w, the HMM is left-to-right; from the word ending
states, every word beginning state can be reached. Imagine that uw
and vw are the best and second best word sequences, resp. Three paths,
each of which optimal in a certain sense, are subjects of our interest:

The global optimal path Py (through word sequence uw)

The best path P through the second best word sequence Yw. Itis
lost (i. e. unavailable for trace-back) because it recombines inside
word w with the better scored path Py.



The best path through vw which is available for trace-back is

- pathP3, whichis the best path through vw satisfying the additional
requirement that the word boundary between v and w coincides
with the word boundary between u and w.

Generally, P2 will have a better score than P3, that is, the path P3
found is only sub-optimal. On the other hand, if P2 recombines with
Py inside w, there is some indication that P2 and P3 are relatively close
to each other anyway and that so are their-costs. This can be taken as
a justification for using this sub-optimal decoding strategy in a sys-
tem. The experimental results of the following chapter show indeed
that although the sub-optimality is visible, the proposed approach
solves the top-N decoding probiem with sufficient accuracy.
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Fig. 3: Nustration of the approximation error. The best path P2 for
word string vw recombines with the globally best path Py (word string
uw) inside word w and is thus unavailable for trace back. Only the path
P3 through uw which passes the syntax node at the same time as the
path through vw (i. e., the word boundaries are reached at the same
time) can be recovered by trace-back.

3 EXPERIMENTAL RESULTS
3.1 The Recognition System Environment

Experimental tests were performed within the SPICOS system,
with *SPICOS’ standing for 'Siemens-Philips-IPO continuous-speech
recognition and understanding system’. Within this joint project a
man-machine dialogue system has been developed which provides
voice access in German to a data base containing information about
the projectitself. The SPICOS system consists of modules for speaker-
dependent continuous-speech recognition, language interpretation,
database-query evaluation, answer generation, and speech synthesis.
For details, cf. [8], [9], [10], [11].

The phoneme-based large-vocabulary speech-recognition mod-
ule of SPICOS as used for the tests described below can be character-
ized as follows: .

- Office environment, close-talking microphone.
Preprocessing:
- Sampling rate 16 kHz

- 30 cepstrally smoothed spectral intensities in logarithmic units,

normalized with respect to average intensity, plus intensity
- Additionally, first and second differences of these.
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Acoustic-phonetics:

Standard pronunciation dictionary (one pronunciation per word)

- 44 context-independent phonemes

- Continuous mixture-density distributions.

Search:

- Data-driven one-stage DP search, modified according to chapter
2 in order to obtain (sub-optimal) top-N sentence hypotheses lists.

Language model:

- Recognition vocabulary comprising 917 words

- Either finite state grammar (test set perplexity ([4]) 85) or stoch-
astic bigram language model (test set perplexity 124).

Training and test data:

- 2 times 100 phonetically balanced training sentences (7 minutes
of speech)

- 200 test sentences (data-base queries)

- Small overlap only of training and recognition vocabularies. -

3.2 Recognition Results -

For each of four speakers (two male, two female), recognition
tests have been performed on 200 test sentences. Table 1 shows, for
N from 1 to 10 and the two language models, how often the spoken
sentence is included in the top-N sentence hypotheses list. For the
finite-state language model, more than one half of the spoken sen-
tences which were not correctly recognized (i.e., notin position 1) was
found among top 4. On the other hand, one third was not even among
top 12. For the bigram language model, one third of the incorrectly
recognized sentences can be found among top 5. For completeness,
the top-N error rates are given in table 2, defined as deletions + inser-
tions + substitutions of (for each spoken sentence) the best recogni-
tion in the top-N list, divided by the number of spoken words. Both
top-N sentence recognition rate and top-N error rate show what at best
could be achieved by post-processing the sentence-hypotheses lists
with a powerful parser; in some cases, however, not even human
knowledge would be sufficient to recover the spoken sentence from a
list. ’

A first experiment with the top-12 lists of one speaker (F-10;
finite-state language model) showed that among those 158 of the 200
spoken test sentences which can be correctly interpreted by the
SPICOS parser (cf. [11]), the best sentence which is accepted by the
parser is in 137 cases the spoken one, while only 123 of these sen-
tences are in top-1 position: So some extra effort in the search proce-
dure reduced the number of not recognized sentences by a third.

For a few spoken sentences, additional time alignments have
been carried out for each sentence on the top-10 list. The results were
as could be expected from theory: In some of the cases, the best sen-
tence (position 1) forced its word boundaries to the poorer scored can-
didates, thus often increasing their scores with respect to the exact
ones: The effect of recombining the best path of a word sequence with
a better path of another word sequence described in section 2. The
exact scores generally forced a reordering of the sub-optimal top-10
list. Nevertheless, these effects are small enough to be tolerated in a
real system.

3.3 Computational and Storage Costs

The storage costs of top-N DP are proportional to N, the length
of a list. In our system, the storage for trace-back pointers etc. in-
creased by a factor of 2N; the additional factor of 2 is due to the fact
that besides the usual one transition number and one back pointer, the
cost difference to the top hypothesis and a pointer to the in-list posi-
tion have to be stored.

Inorderto get experimental results about the computational costs
of the algorithm, five off-line recognition tests (with finite-state gram-
mar) were performed on the 200 SPICOS sentences (754 seconds of
speech) for the same (female) speaker. The word error rate is 4.7 %
((word substitutions + deletions + insertions) / number of words), the-
average number of active grid points per test frame is 2344, and (at
least) 4 optimal paths are lost by the search procedure due to pruning.

The result isillustrated in table 3 which shows that the extra com-
putational cost for recovering top-N sentences, compared to the usual
search, is significant for high N (here: N = 8) only but negligible for



small ones. Indeed, the figures show that the measured CPU times,
which depend on the Ioad of the machine, are only a rough clue for the
computational costs, which increase strictly from 'STANDARD' to
*TOP 8’ because the computations of each test job are a subset of the
following one.

Nevertheless, we can conclude that extended trace back for top
N can be used for reasonable values of N (e.g., N = 5) without signif-
icant effects on recognition time. For high values of N, the list sorting
becomes more and more important, such that a more sophisticated im-
plementation is needed.

SUMMARY

Based on a generalization of Bellman’s optimality principle, the
one-stage dynamic-programming search algorithm can be modified in
order to find the top-N sentences with respect to the Viterbi criterion.
A sub-optimal variant of the top-N dynamic-programming search has
been presented and tested within the SPICOS system,

Experimental tests yielded quite satisfying results in two aspects:
For the finite-state grammar, the majority of the sentences not cor-
rectly recognized are at least among top 4, and the deviation from the
exact solution is tolerable. For reasonable values of N (e.g., N = 5),
the additional storage and computational amount is small with respect
to the other SPICOS requirements. Thus, it has been demonstrated that
a continuous-speech recognition system based on the one-stage dy-
namic-programming algorithm can be modified in order to produce a
top-N sentence-hypotheses list with little effort only on the level of
the book-keeping for trace-back.
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speaker speaker .
topN F-01 F-10 M03  M-10 | total / in% topN F-01 F10 MO03 M-10 |total / in%
1 133 157 164 137 591 739 1 106 139 143 101 489 611
2 161 172 183 148 664 830 2 132 152 162 113 559 69.9
3 171 176 187 158 692 865 3 136 156 166 118 576 72,0
4 175 182 191 159 707 884 4 140 159 169 119 587 734
5 178 184 191 160 713 89.1 5 140 162 171 120 593 74.1
6 178 186 192 161 717 896 6 143 165 171 121 600 75.0
7 181 187 192 162 722 903 7 145 167 172 125 609  76.1
8 184 187 192 165 728 910 8 146 170 173 127 616 710
9 184 188 192 165 729 911 9 148 171 175 127 | 621 776
10 185 188 192 165 730 913 10 149 172 176 128 625 78.1
total 200 200 200 200 | 800 1000 total 200 200 200 200 800 100.0

Table 1a: Correct sentences among top-N sentence lists. N=1 is
"sentence correctly recognized”. Language model: finite-state syn-
tax (perplexity 85).

speaker

topN F-01 F-10 M-03 M-10 | average
1 11.5 5.7 5.5 13.7 9.1
2 8.7 43 35 11.8 7.1
3 79 4.0 31 11.0 6.5
4 7.5 37 2.7 10.6 6.1

5 7.3 35 26 10.2 59

6 7.0 3.2 2.6 10.0 57

7 6.8 3.0 25 9.4 54

8 6.5 2.7 24 9.1 52
9 6.3 2.7 22 9.0 51
10 6.1 26 2.1 8.8 4.9

Table 2: Top-N error rates (defined in section 3.2) in % (bigram lan-
guage model used).

Table 1b: Correct sentences among top-N sentence lists. N =1 is "sen-
tence correctly recognized". Statistical language model (bigram, test
set perplexity 124).

-
£

METHOD |CPU TIME [IN SECONDS| x REAL TIME|RELATIVE
" STANDARD} 03:55:03.98] 14 104 18.7 100.0 %
TOP 1 03:44:55.55; 13 496 17.9 95.7 %
TOP 2 03:44:02.15| 13442 17.8 953 %
TOP 4 04:00:54.45| 14454 19.2 1025 %
TOP 8 04:57:08.66] 17 829 23.6 1264 %

(TESTS PERFORMED ON A VAX 8700- 6 MIPS)

Table 3: Effect of the number of top sentence hypotheses on the
computation time of SPICOS (with finite state syntax).



